IEC 61131-3

MODBUS

SNMP

REV-202111

- Sx NOC 24 V Relay Outputs
- ❖ 1x Slot for IF Module⁽¹⁾
- ❖ Operating Range -40°C to +70°C
- **4** 600 W Integrated Surge Protections

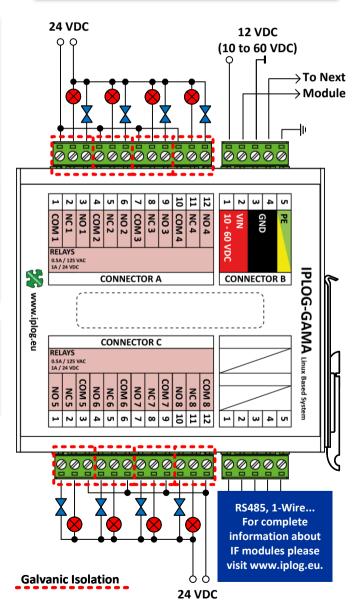
RE8.2 is an industrial module which can be easily adapted for a wide range of tasks. It can be used as IPLOG-G submodule or as standalone addressable module at MODBUS RTU bus.

RE8.2E is a cost-optimized version of RE8.2 without its own CPU. It can be used only as an IPLOG-G submodule.

	PARAMETER	VALUES	NOTE				
	Power Supply	12, 24, 48 VDC	10 to 60 VDC				
	Consumption	Max. 1.5 W					
	Surge Protection	600 W	10/1000 μs				
	Operating Range	−40 to +70 °C					
	Storage Range	−40 to +70 °C					
삥	Humidity	Max. 95 %	No-condensing				
DEVICE	Dimension	35 x 110 x 119 mm	WxHxD				
اٍ ۵	Weight	Max. 0.38 kg					
	Installation	DIN35 or Flat Surfac	e				
	Device Class	1	EN 61140				
	Ingress Protection	IP 20	EN 60529				
	Degree of pollution	II .	EN 60664-1				
	Connections	Screw Terminals					
	Conduct. cross-section Max. 2.5 mm ²						

	PARAMETER	VALUES	NOTE	
	Series	32-bit MCU		
CPU	Frequency	64 MHz		
	Flash	512 kB		
	RAM	64 kB		

Safety Precautions


electrical shock.

If dangerous voltage is applied to the personnel terminals, only appropriate electrical education may perform installation and servicing of the equipment. In the event of a fault, the device must be sent to the producer for repair. The device must be earthed in accordance with national standards. We recommend the manipulation of terminal blocks, only in the event they are not in the presence of dangerous voltage. Failure comply with to recommendation may result in the risk of

PRODUCT NAME	CODE	NOTE	
RE8.2-01-BOX	5000-1001	2x RS485	
RE8.2-01G-BOX	5000-1002	2x RS485 (isolated)	ERING
RE8.2-05-BOX	5000-1007	1x RS485, 2x ALARM IN	ER
RE8.2-PCB	0000-1000	PCB Module	ORD
RES 2F-PCR ⁽²⁾	0000-0900	PCB Module	- I

For a Full Range of Interfaces Please Visit www.iplog.eu.

- (1) Does not apply to the RE-8.2E module.
- (2) RE8.2E module is not possible to use as a standalone module. Module is designed only for installation on motherboard IPLOG-G1, G2, G2E and G3.

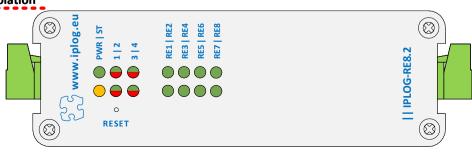
MODBUS

SNMP

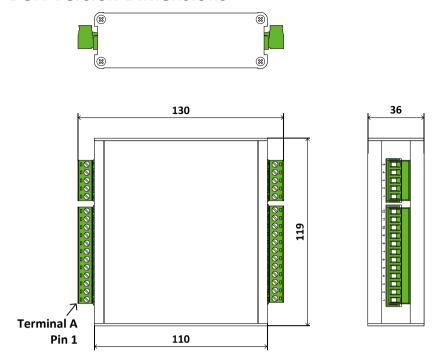
REV-202111

Location and Designation of Connectors and LEDs

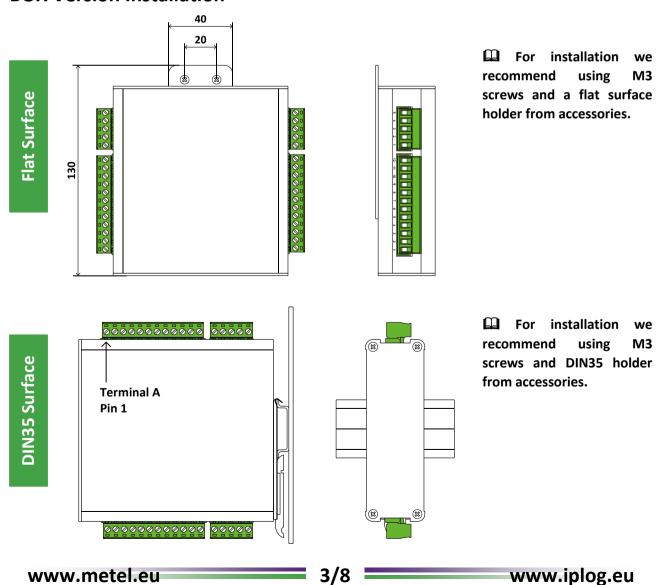
NOTE: The order of the terminal numbers in the table below corresponds to the order of the terminal numbers found on the device.


COI	CONNECTOR A		LEDS	
12	NO 4	Normally Open	RE4	Closed = Log. 1 = Lights
11	NC 4	Normally Closed		
10	сом 4	Common Terminal of NOC Relay 4		
9	NO 3	Normally Open	RE3	Closed = Log. 1 = Lights
8	NC 3	Normally Closed		
7	сом з	Common Terminal of NOC Relay 3		
6	NO 2	Normally Open	RE2	Closed = Log. 1 = Lights
5	NC 2	Normally Closed		
4	COM 2	Common Terminal of NOC Relay 2		
3	NO 1	Normally Open	RE1	Closed = Log. 1 = Lights
2	NC 1	Normally Closed		
1	COM 1	Common Terminal of NOC Relay 1		

COI	CONNECTOR B		LEDS		
5	PE	Earthing Terminal			
3	GND	Power Input – Minus Terminals Terminals are Internally Interconnected	DWD	Dower's Connected LED Lights Up	
1	VIN 10-60 V DC	Power Input – Plus Terminals Terminals are Internally Interconnected	PWR	Power is Connected, LED Lights Up.	


COI	CONNECTOR C		LEDS	
12	COM 8	Common Terminal of NOC Relay 8		
11	NC 8	Normally Closed		
10	NO 8	Normally Open	RE8	Closed = Log. 1 = Lights
9	сом 7	Common Terminal of NOC Relay 7		
8	NC 7	Normally Closed		
7	NO 7	Normally Open	RE 7	Closed = Log. 1 = Lights
6	сом 6	Common Terminal of NOC Relay 6		
5	NC 6	Normally Closed		
4	NO 6	Normally Open	RE6	Closed = Log. 1 = Lights
3	COM 5	Common Terminal of NOC Relay 5		
2	NC 5	Normally Closed		
1	NO 5	Normally Open	RE 5	Closed = Log. 1 = Lights

LED		LED				
1	BUS 1 (Tx = Red / Rx = Green)	3	IF05 Input BI1 Sabotage Short = Log. 1 = Lights			
2	BUS 2 (Tx = Red / Rx = Green)	4 IF05 Input BI2 Sabotage Short = Log. 1 = Lig				
Applies only to the RE-8.2 module, which can be used as a stand-alone IO module.						


Galvanic Isolation

BOX Version Dimensions

BOX Version Installation

IEC 61131-3

MODBUS

REV-202111

Default Settings of MODBUS Communication

Device ID: **1** | Speed: **115** 200 Parity: None | Data bits: 8 Stop bits: 1

Modbus registers

	Subject	Туре	R/W	Value	Offset
	Product Type	u8[3]	R		1002-04
	Serial Number	u32	R		1005-06
	PCB Version	u32	R		1007-08
	PCB Revision	u16	R		1009
	FW Version Major	u16	R		1010
	FW Version Minor	u16	R		1011
	FW Version - Revision	u32	R		1012-13
Device				0 = N/A	
Identifica-				1 = IF#01 not Inserted	
tion	IF#01 Slot State	u16	R	2 = IF#01 Inserted, CRC error	1021
				3 = IF#01 Inserted,	
				CRC OK	
	IF#01 Product Type	u8[3]	R		1022-24
	IF#01 Serial Number	u32	R		1025-26
	IF#01 PCB Version	u32	R		1027-28
	IF#01 PCB Revision	u16	R		1029
	Reset	u16	RW	55203 = To Reboot	1201
Device	Bootloader / Application	u16	R	0x00A – Application,	1203
	Bootioader / Application	uio		0x00B – Bootloader	1203
Control	Restart to Bootloader (1)	u16	RW	617 = To Bootloader else = deactivate bootloader	1204
Device	Board Power Voltage	u16	R	105 = 10,5V	1311
Status	Board Temperature	s16	R	-200 = -20,0°C 250 = 25,0°C	1321

⁽¹⁾ To activate the bootloader, it is necessary to write a value of 617 in the registry and restart the device. To reactivate the application, enter any value other than 617 in the appropriate registry and restart the device. If the device is in the bootloader, the LED 1 will flash red.

	Subject	Туре	R/W	Value	Offset
	Baudrate	u16	RW	192 = 19 200 bps 1152 = 115 200 bps 9216 = 921 600 bps 10000 = 1 000 000 bps	2110
BUS 1	Databits	u16	RW	8 = 8b, 9 = 9b	2111
Settings	Parity	u16	RW	78 = None 69 = Even 79 = Odd	2112
	Stopbits	u16	RW	10=1, 20=2, 15=1,5	2113
	MODBUS address	u16	RW	1 - 247	2120

	Subject	Channel	Туре	R/W	Value	Offset
IF-05	Balanced Input 1 BIN	DI#33	bit	R	0 = inactive	3033
States of	Balanced Input 2 BIN	DI#34	bit	R	1 = active	3034
	Balanced Input 1	AI#33	u16	R	1000 = 1000 Ω	5033
Inputs	Balanced Input 2	AI#34	u16	R	0 = 0 Ω	5034

IEC 61131-3

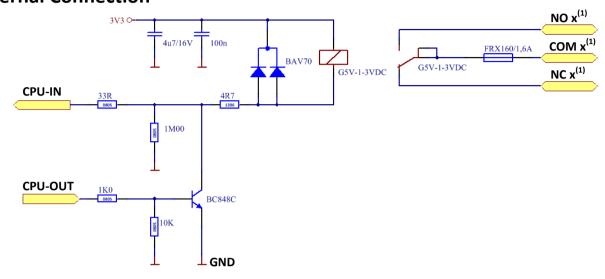
MODBUS

REV-202111

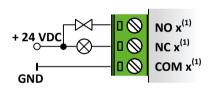
	Subject	Channel	Туре	R/W	Value	Offset
	COIL Relay 1	DI#01	bit	R		3001
	COIL Relay 2	DI#02	bit	R		3002
	COIL Relay 3	DI#03	bit	R	0 = inactive 1 = active	3003
States of	COIL Relay 4	DI#04	bit	R		3004
Relay	COIL Relay 5	DI#05	bit	R		3005
Outputs	COIL Relay 6	DI#06	bit	R		3006
	COIL Relay 7	DI#07	bit	R		3007
	COIL Relay 8	DI#08	bit	R		3008
	Inputs	DI#16 - DI#01	u16	R	0x0000 - 0x00FF	3001

	Subject	Channel	Туре	R/W	Value	Offset
	Relay Output 1	DO#01	bit	RW		4001
	Relay Output 2	DO#02	bit	RW		4002
	Relay Output 3	DO#03	bit	RW		4003
Relay	Relay Output 4	DO#04	bit	RW	0 = inactive 1 = active	4004
Outputs	Relay Output 5	DO#05	bit	RW		4005
Outputs	Relay Output 6	DO#06	bit	RW		4006
	Relay Output 7	DO#07	bit	RW		4007
	Relay Output 8	DO#08	bit	RW		4008
	Outputs	DO#16 - DO#01	u16	RW	0x0000 - 0x00FF	4001

REVISION: 201807 - Default


201912 - Extension of modbus registers 202111 - Updated list of IF modules

User Manual


REV-202111

Relay outputs are capable of switching loads with either AC or DC voltage. Relay Outputs are accessible from METEL IEC 61131-3 IDE or directly from Linux scripts and can be configured independently of each other. Logical state of each output is signalized by the relevant LED diode on the front panel. For details please see the table "Location and Designation of Connectors and LEDs ".

Internal Connection

Examples of Connections

Relay NOC (Changeover) output has a common terminal COM. The two state relay can switch both AC and DC voltages to load. In the non-voltage state are relays terminals NO $x^{(1)}$ – COM $x^{(1)}$ disconnected and NC $x^{(1)}$ – COM $x^{(1)}$ connected. The relay is turned on when program set logic 1 at its coil. When the relay is turned on, corresponding REx⁽¹⁾ LED diode on the front side lights up (in default configuration).

Relay terminals must be protected with an external circuit breaker or fuse to prevent the rated current of the terminal or the load being exceeded. When switching inductive load it is recommended to protect relay outputs with an appropriate external component (e.g. varistor, RC circuit, or diode).

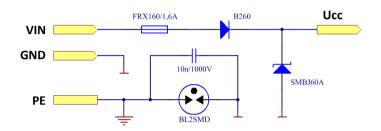
Technical Parameters

Parameter	Value	Note	
Contact Type	NOC	Changeover Relay	
Number of Poles	1		
Max. Load	0.5 A / 120 VAC	Resistive Load	
	1 A / 24 VDC Resistive Load		
Electrical Lifetime	3,000,000 Operations		
Isolation Voltage	1.000 Vrms / 1 min.	1.000 Vrms / 1 min. Terminals to Electronic or Cas	

(1) The letter "x" replaces the output number.

User Manual

REV-202111

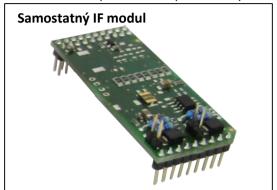


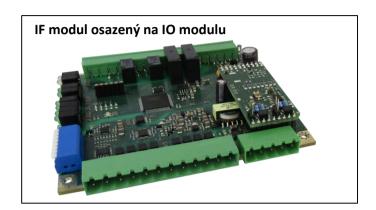
The PE terminal must be earthed according to the applicable standards in the country of installation. Correct grounding protects personnel against electric shock and improves device immunity from interferences. If dangerous voltage is applied to the terminals, only personnel with appropriate electrical education may perform installation and servicing of the equipment. Before any manipulation with the device, including disconnecting and connecting the terminals, the dangerous voltage must be disconnected.

POWER INPUT

The supply voltage is connected to VIN and GND terminals. The terminals are doubled for easier connection between the modules installed side by side.

Internal Connection of POWER INPUT


The cover of the device is galvanically connected to the PE terminal which is galvanically isolated from the device electronic. It allows the user to use the device even in systems with a grounded + pole.


Parameter	Value	Note
Input Voltage Range	10 to 60 VDC	
Surge Protection	600 W	10 / 1000 μs
Short Circuit Protection	Polyswitch	
Reverse Polarity Protection	Diode	

User Manual REV-202111

IO modules include one IF slot which can be used for IF modules. The main purposes of the IF modules are to provide:

- ❖ RS485 connectivity if the IO module board is used in the standalone addressable IO module communicating with PLC via the RS485 bus
- Provides serial interfaces for communication with other systems
- Additional inputs and outputs into system

- IF modules must be plugged into the IF slot when the power is turned off. After, the power is turned on the new IF module is automatically detected.
- When ordering, we recommend using the online configurator available at www.iplog.eu.

Overview Table of IF Modules

ORDERING	î	CONNECTOR D				
NAME	DESCRIPTION	1	2	3	4	5
IF-01	2x RS485	A1+	B1-	GND	B2-	A2+
IF-01G	2x RS485 ISO	A1+	B1-	GND-ISO	B2-	A2+
IF-02	2x RS232	Rx1	Tx1	GND	Rx2	Tx2
IF-02G	2x RS232 ISO	Rx1	Tx1	GND-ISO	Rx2	Tx2
IF-04G	RS485 ISO, DALI	A+	B-	GND-ISO	-D BUS	+D BUS
IF-05	RS485, 2x INPUTS ⁽¹⁾	A+	B-	GND	BI 2	BI 1
IF-06	AUDIO	OUT R	OUT L	GND	IN R	IN L
IF-07G	RS485 ISO, 1-Wire	A+	B-	GND-ISO	1-Wire	5V0-ISO
IF-09	RS485, M-Bus	A+	B-	GND	M-Bus+	M-Bus-
IF-10	KNX	BUS+	BUS+	NC	BUS-	BUS-
IF-11	Wiegand, 2x INPUTS ⁽¹⁾	Data 0	Data 1	GND	BI 2	BI 1
IF-12	4x INPUTS ⁽¹⁾	BI 4	BI 3	GND	BI 2	BI 1
IF-13	RS232 (CTS, RTS, Rx, Tx)	CTS	RTS	GND	Rx	Tx
IF-13G	RS232 (CTS, RTS, Rx, Tx) ISO	CTS	RTS	GND-ISO	Rx	Tx
IF-14G	4x DIGITAL INPUTS (24V)	ISO DI 4	ISO DI 3	GND-ISO	ISO DI 2	ISO DI 1
IF-15	4x OC (NPN) OUTPUTS	OC 4	OC 3	GND	OC 2	OC 1
IF-15G	4x OC (NPN) OUTPUTS ISO	ISO OC 4	ISO OC 3	GND-ISO	ISO OC 2	ISO OC 1
IF-17G	1x RS485, 1x RS232	A+	B-	GND-ISO	Rx	Tx
IF-18G	1x LORA-EP1, 1x RS485	A+	B-	GND-ISO	Tx/Rx	VCC
IF-21	2x INPUTS ⁽¹⁾ , 1x RELAY	СОМ	NO	GND	BI 2	BI 1
IF-22G	2x DI. INPUTS 24V, 1x RELAY	СОМ	NO	GND-ISO	ISO DI 2	ISO DI 1

⁽¹⁾ Alarm / 5V Digital Inputs. It does not apply to combination with the BI8.1 and BI8.4 module, where they only work as digital.

That way labeled IF modules are suitable for standalone IO modules. They are always connected to a PLC or LAN-RING switch via the RS485 bus.