MODBUS

SNMP

REV-202111

- * 8x Alarm 8-bit Outputs
- ❖ 3x 10-bit Alarms / Digital 5V Inputs
- 1x NOC 24V Relay Output
- 2x Open Collector NPN Outputs
- ❖ 1x Slot for IF Module
- ❖ Operating Range -40°C to +70°C
- 600 W Integrated Surge Protections

BO8.1 is an industrial module which can be easily adapted for a wide range of tasks. It can be used as IPLOG-G submodule or as standalone addressable module at MODBUS RTU bus.

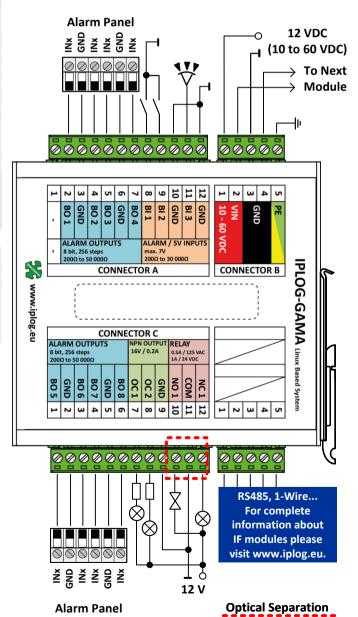
	PARAMETER	VALUES	NOTE				
	Power Supply	12, 24, 48 VDC	10 to 60 VDC				
	Consumption	Max. 1.5 W					
	Surge Protection	600 W	10/1000 μs				
	Operating Range	−40 to +70 °C					
	Storage Range	−40 to +70 °C					
삥	Humidity	Max. 95 %	No-condensing				
DEVICE	Dimension	35 x 110 x 119 mm	WxHxD				
	Weight	Max. 0.38 kg					
	Installation	DIN35 or Flat Surfac	e				
	Device Class	1	EN 61140				
	Ingress Protection	IP 20	EN 60529				
	Degree of pollution	II	EN 60664-1				
	Connections	Screw Terminals					
	Conduct. cross-section Max. 2.5 mm ²						

	PARAMETER	VALUES	NOTE
	Series	32-bit MCU	
CPU	Frequency	64 MHz	
	Flash	512 kB	
	RAM	64 kB	

Safety Precautions

4

If dangerous voltage is applied to the terminals, only personnel with appropriate electrical education may


perform installation and servicing of the equipment. In the event of a fault, the device must be sent to the producer for repair. The device must be earthed in accordance with national standards. We recommend the manipulation of terminal blocks, only in the event they are not in the presence of dangerous voltage. Failure to comply with this recommendation may result in the risk of electrical shock.

DIN35 Installation

PCB Version

PRODUCT NAME	CODE	NOTE			
BO8.1-01-BOX	5000-0801	2x RS485	<u>២</u>		
BO8.1-01G-BOX	5000-0802	2x RS485 (isolated)	ERING		
BO8.1-05-BOX	5000-0807	1x RS485, 2x ALARM IN	ORDE		
BO8.1-PCB	0000-0800	PCB (DPS) Module	Ö		
For a Full Range of Interfaces Please Visit www.iplog.eu.					

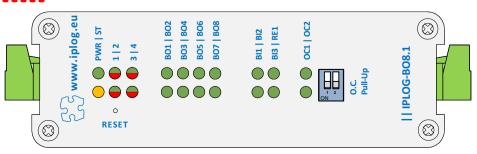
MODBUS

SNMP

REV-202111

Location and Designation of Connectors and LEDs

NOTE: The order of the terminal numbers in the table below corresponds to the order of the terminal numbers found on the device.

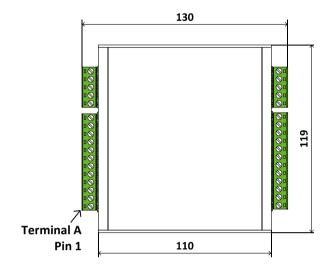

CONNECTOR A		LED		
12	GND	Ground		
11	BI 3	10-bit Alarm or Digital Input 5 V DC	BI1	Sabotage Short = Log 1 = Lights
10	GND	Ground		
9	BI 2	10-bit Alarm or Digital Input 5 V DC		Sabotage Short = Log 1 = Lights
8	BI 1	10-bit Alarm or Digital Input 5 V DC	ВІЗ	Sabotage Short = Log 1 = Lights
7	BO 4	8-bit Alarm Output	во4	Flashing = Output Value > 200 Ω
6	GND	Ground		
5	BO 3	8-bit Alarm Output	воз	Flashing = Output Value > 200 Ω
4	BO 2	8-bit Alarm Output	BO2	Flashing = Output Value > 200 Ω
3	GND	Ground		
2	BO 1	8-bit Alarm Output	BO1	Flashing = Output Value > 200 Ω
1	-	Not used		

COI	CONNECTOR B		LED		
5	PE	Earthing Terminal			
3	GND	Power Input – Minus Terminals Terminals are Internally Interconnected			
2	VIN 10-60 V DC	Power Input – Plus Terminals Terminals are Internally Interconnected	PWR	Power is Connected, LED Lights Up.	

COI	CONNECTOR C		LED		
12	NC 1	Normally Closes			
11	сом	Common terminal of NOC Relay			
10	NO 1	Normally Open	RE1	Closed = Log. 1 = Lights	
9	GND	Ground			
8	OC 2	Open Collector Output	OC2	Closed = Log. 1 = Lights	
7	OC 1	Open Collector Output	OC1	Closed = Log. 1 = Lights	
6	BO 8	8-bit Alarm Output	BO8	Flashing = Output Value > 200 Ω	
5	GND	Ground			
4	BO 7	8-bit Alarm Output	во7	Flashing = Output Value > 200 Ω	
3	BO 6	8-bit Alarm Output	во6	Flashing = Output Value > 200 Ω	
2	GND	Ground			
1	BO 5	8-bit Alarm Output	во5	Flashing = Output Value > 200 Ω	

LED		LED		
1	BUS 1 (Tx = Red / Rx = Green)	3	IF05 Input BI1 Sabotage Short = Log. 1 = Lights	
2	BUS 2 (Tx = Red / Rx = Green)	4	IF05 Input BI2 Sabotage Short = Log. 1 = Lights	

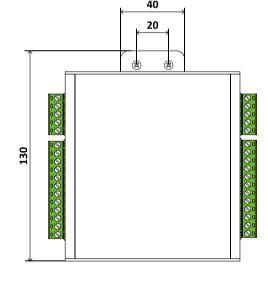
Galvanic Isolation

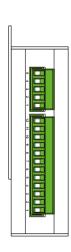

MODBUS

SNMP

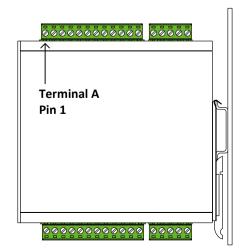
REV-202111

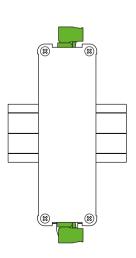
BOX Version Dimensions





BOX Version Installation


Flat Surface



For installation we recommend using M3 screws and a flat surface holder from accessories.

DIN35 Surface

For installation we recommend using M3 screws and DIN35 holder from accessories.

MODBUS SN

SNMP

REV-202111

Default Settings of MODBUS Communication

Device ID: 1 | Speed: 115 200 | Parity: None | Data bits: 8 | Stop bits: 1

Modbus registers

	Subject	Туре	R/W	Value	Offset
	Product Type	u8[3]	R		1002-04
	Serial Number	u32	R		1005-06
	PCB Version	u32	R		1007-08
	PCB Revision	u16	R		1009
	FW Version Major	u16	R		1010
	FW Version Minor	u16	R		1011
	FW Version - Revision	u32	R		1012-13
Device Identifica- tion	IF#01 Slot State	u16	R	0 = N/A 1 = IF#01 not Inserted 2 = IF#01 Inserted, CRC error 3 = IF#01 Inserted, CRC OK	1021
	IF#01 Product Type	u8[3]	R		1022-24
	IF#01 Serial Number	u32	R		1025-26
	IF#01 PCB Version	u32	R		1027-28
	IF#01 PCB Revision	u16	R		1029
	Reset	u16	RW	55203 = To Reboot	1201
Device	Bootloader / Application	u16	R	0x00A – Application, 0x00B – Bootloader	1203
Control	Restart to Bootloader (1)	u16	RW	617 = To Bootloader else = deactivate bootloader	1204
Device	Board Power Voltage	u16	R	105 = 10,5V	1311
Status	Board Temperature	s16	R	-200 = -20,0°C 250 = 25,0°C	1321

⁽¹⁾ To activate the bootloader, it is necessary to write a value of 617 in the registry and restart the device. To reactivate the application, enter any value other than 617 in the appropriate registry and restart the device. If the device is in the bootloader, the LED 1 will flash red.

	Subject	Туре	R/W	Value	Offset
	Baudrate	u16	RW	192 = 19 200 bps 1152 = 115 200 bps 9216 = 921 600 bps 10000 = 1 000 000 bps	2110
BUS 1	Databits	u16	RW	8 = 8b, 9 = 9b	2111
Settings	Parity	u16	RW	78 = None 69 = Even 79 = Odd	2112
	Stopbits	u16	RW	10=1, 20=2, 15=1,5	2113
	MODBUS address	u16	RW	1 - 247	2120

	Subject	Channel	Туре	R/W	Value	Offset
IF-05	Balanced Input 1 BIN	DI#33	bit	R	0 = inactive	3033
States of	Balanced Input 2 BIN	DI#34	bit	R	1 = active	3034
	Balanced Input 1	AI#33	u16	R	1000 = 1000 Ω	5033
Inputs	Balanced Input 2	AI#34	u16	R	0 = 0 Ω	5034

MODBUS

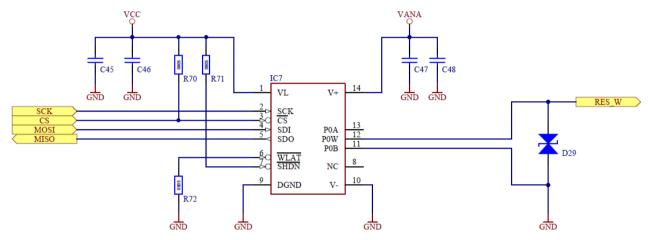
SNMF

REV-202111

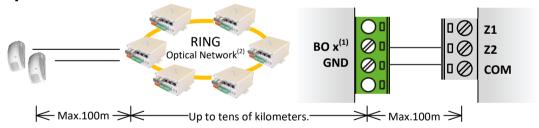
	Subject	Channel	Туре	R/W	Value	Offset
	Balanced Output 1	AO#01	u16	RW		6001
	Balanced Output 2	AO#02	u16	RW		6002
Setting the	Balanced Output 3	AO#03	u16	RW		6003
Value of	Balanced Output 4	AO#04	u16	RW	1000 = 1000 Ω	6004
Alarm	Balanced Output 5	AO#05	u16	RW	$0 = 0 \Omega$	6005
Outputs	Balanced Output 6	AO#06	u16	RW		6006
	Balanced Output 7	AO#07	u16	RW		6007
	Balanced Output 8	AO#08	u16	RW		6008
	Balanced Output 1 offset	AO#01 Par.	u16	RW		6101
	Balanced Output 2 offset	AO#02 Par.	u16	RW	1000 = 1000 Ω 0 = 0 Ω ⁽¹⁾	6102
Alarm	Balanced Output 3 offset	AO#03 Par.	u16	RW		6103
Output	Balanced Output 4 offset	AO#04 Par.	u16	RW		6104
Correction	Balanced Output 5 offset	AO#05 Par.	u16	RW		6105
Settings	Balanced Output 6 offset	AO#06 Par.	u16	RW		6106
	Balanced Output 7 offset	AO#07 Par.	u16	RW		6107
	Balanced Output 8 offset	AO#08 Par.	u16	RW		6108
	Balanced Output 1 default	AO#21 Par.	u16	RW		6121
	Balanced Output 2 default	AO#22 Par.	u16	RW		6122
Default	Balanced Output 3 default	AO#23 Par.	u16	RW		6123
Value of	Balanced Output 4 default	AO#24 Par.	u16	RW	1000 = 1000 Ω	6124
Alarm	Balanced Output 5 default	AO#25 Par.	u16	RW	$0=0~\Omega^{(1)}$	6125
Outputs	Balanced Output 6 default	AO#26 Par.	u16	RW		6126
	Balanced Output 7 default	AO#27 Par.	u16	RW		6127
	Balanced Output 8 default	AO#28 Par.	u16	RW		6128

	Subject	Channel	Туре	R/W	Value	Offset	
	Balanced Input 1 BIN	DI#01	bit	R			3001
	Balanced Input 2 BIN	DI#02	bit	R	0 = inactive		3002
States of	Balanced Input 3 BIN	DI#03	bit	R	1 = active		3003
Inputs and	COIL Relay 1	DI#12	bit	R			3012
Outputs	Inputs	DI#16 - DI#01	u16	R	0x0000 - 0x000F	3001	
Outputs	Balanced Input 1	AI#01	u16	R	1000 = 1000 Ω 0 = 0 Ω	5001	
	Balanced Input 2	AI#02	u16	R		5002	
	Balanced Input 3	AI#03	u16	R		5003	

	Subject	Channel	Туре	R/W	Value	Offset
Relay and OC Outputs	Relay Output 1	DO#01	bit	RW	0 = inactive	4001
	Open Collector 1	DO#02	bit	RW	1 = active	4002
	Open Collector 2	DO#03	bit	RW	1 - active	4003
	Outputs	DO#16 - DO#01	u16	RW	0x0000 - 0x000F	4001


REVISION: 201912 – Default

202111 - Updated list of IF modules


REV-202111

Alarm outputs are analog outputs with variable resistances ranging from 200Ω to $50k\Omega$. They are used to transmit resistance values from remote PIR sensors (even tens of kilometers) to I&HAS control panel inputs. Sensors are usually connected to alarm inputs on LAN-RING switches, PLC IPLOG or IO modules. The alarm outputs are connected directly to the I&HAS control panel inputs. Unlike conventional digital outputs, the ON/OFF states of the alarm outputs meet the requirements of EN50131-1 for detection of sabotage (short-circuit and disconnect), alarm (zone violation) and possibly faults or masking of sensors connected to alarm loops. A great advantage is the trouble-free connection of even very remote sensors using optical fiber, which is immune to electromagnetic interference. All outputs are accessible from METEL IEC 61131-3 IDE or directly from Linux scripts and can be configured independently of each other. Logic state of each output is signalized by a relevant LED diode on the front panel. For details please see the table "Location and Designation of Connectors and LEDs ".

Internal Connection

Example of Connections

PIR Sensors

LAN-RING Switches on Fibre Network BO8.1

I&HAS Panel

Technical Parameters

Parameter	Value	Note
Outputs Type	8 bit	256 Steps
Adjustable Range	200 to 50 000 Ω	
Surge Protection	600 W	10 / 1000 μs

Set Value Ω	500	1000	2500	5000	7500	10000	15000	20000	30000	40000	50000
Tolerance Ω	100	150	200	350	400	600	800	1200	1600	2500	5000

⁽¹⁾ The letter "x" replaces the output number.

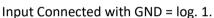
⁽²⁾ Data transmission for the intrusion control panel is protected by separation into a unique VLAN and high priority marking (QoS).

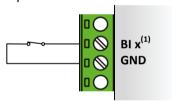
REV-202111

- In alarm mode there is an input measuring the loop resistance which allows connections of PIR, MW and other alarm sensors. Inputs are therefore capable of distinguishing a normal state, alarm, sabotage, masking, failure, low or high resistance as required by the EN 50131-1 standard.
- ❖ In digital mode there are inputs used as 5 V Digital Dry Inputs.

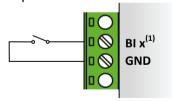
All inputs are accessible from METEL IEC 61131-3 IDE or directly from Linux scripts and can be configured independently of each other. Logic state of each input is signalized by a relevant LED diode on the front panel. For details please see the table "Location and Designation of Connectors and LEDs ".

<u>Default programmable LEDs settings is as follows:</u>

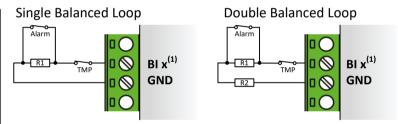

- Alarm Mode: LED On => Balanced loop input BI < 7.5 kΩ.
- ❖ Digital Mode: LED On => Input active, input terminal grounded to GND

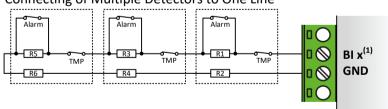

LED Off => Input not active, input terminal is open and internally Pull-Up to 3V3

Internal Connection CPU 10K 100R BI x⁽¹⁾ SMBJ6.5CA GND


Examples of Connections

Digital Dry Contact Schematic

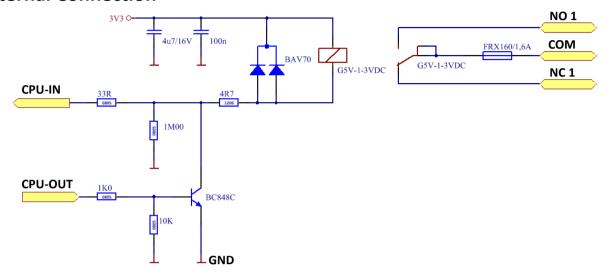



Input Disconnected from GND = log. 0.

Alarm Contact Schematic

Connecting of Multiple Detectors to One Line

Technical Parameters


Parameter	Value	Note
Input Voltage	Max. 7 V DC	
Input Current	0.3 mA at 5 V DC	
Surge Protection	600 W	10 / 1000 μs
Alarm Mode	From 10 to 30.000 Ω	10-bit resolution
Digital Mode	Log. 0: Open	
	Log. 1: Close to Ground	

⁽¹⁾ The letter "x" replaces the input number.

REV-202111

The relay output is capable of switching loads with either AC or DC voltage. The Relay output is accessible from METEL IEC 61131-3 IDE or directly from Linux scripts and can be configured independently of each other. Logic state of each output is signalized by a relevant LED diode on the front panel. For details please see the table "Location and Designation of Connectors and LEDs ".

Internal Connection

Examples of Connections

Relay NOC (Changeover) output has a common terminal COM. Two state relay can switch both AC and DC voltages to load. In the non-voltage state are relay terminals NO 1 - COM disconnected and NC 1 – COM connected. The relay is turned on when the program set logic 1 at its coil. When the relay is turned on, corresponding RE1 LED diode on the front side light up (in default configuration).

Relay terminals must be protected with an external circuit breaker or fuse to prevent the rated current of the terminal or the load being exceeded. When switching inductive load it is recommended to protect relay outputs with an appropriate external component (e.g. varistor, RC circuit, or diode).

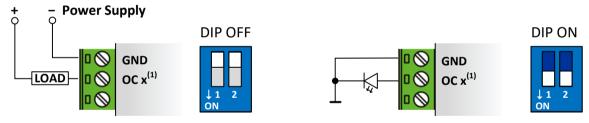
Technical Parameters

Parameter	Value	Note
Contact Type	NOC	Changeover Relay
Number of Poles	1	
Max. Load 0.5 A / 120 VAC		Resistive Load
	1 A / 24 VDC	Resistive Load
Electrical Lifetime	3,000,000 Operations	
Isolation Voltage	1.000 Vrms / 1 min.	Terminals to Electronic or Case

BO8.1

User Manual

REV-202111


Outputs are capable of switching low DC voltage loads. Outputs are open collector NPN (sink) transistors. All collector outputs are accessible from METEL IEC 61131-3 IDE or directly from Linux scripts and can be configured independently of each other. Logic state of each output is signalized by a relevant LED diode on the front panel. For details please see the table "Location and Designation of Connectors and LEDs ".

Internal Connection BAV99 VCC OC **LED OUT** DIP x⁽¹⁾ **DIP Switch** BC848C at Front Panel OC x⁽¹⁾ **OUT OC** 3K9 BCX55-16 SMBJ16A § 10K NC **GND**

Examples of Connections

Sinking (DIP OFF)

Sourcing with an Internal PullUp (DIP ON)

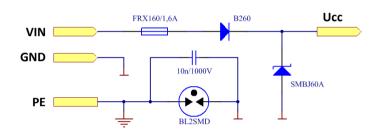
The number on the DIP switch corresponds to the output number. The outputs are independent and can be freely set. For example one output as Sourcing and the other as Sinking.

Technical Parameters

Parameter	Value	Note
Output Type	NPN	Open Collector
Internal Pull-Up	1,000 Ω	ON/OFF by a DIP Switch
Maximum Load	16 V / 250 mA	Sinking
	12 V / 1 mA	Sourcing
Switching Frequency	Max. 10 kHz	Duty Cycle 1:1
Surge Protection	600 W	10 / 1000 μs

(1) The letter "x" replaces the output number.

REV-202111

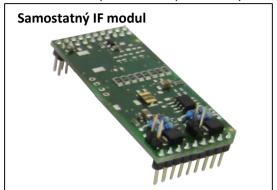


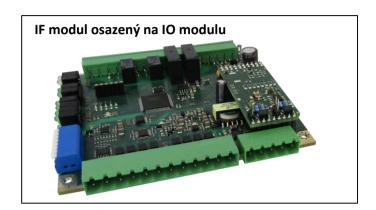
The PE terminal must be earthed according to the applicable standards in the country of installation. Correct grounding protects personnel against electric shock and improves device immunity from interferences. If dangerous voltage is applied to the terminals, only personnel with appropriate electrical education may perform installation and servicing of the equipment. Before any manipulation with the device, including disconnecting and connecting the terminals, the dangerous voltage must be disconnected.

POWER INPUT

The supply voltage is connected to VIN and GND terminals. The terminals are doubled for easier connection between the modules installed side by side.

Internal Connection of POWER INPUT


The cover of the device is galvanically connected to the PE terminal which is galvanically isolated from the device electronic. It allows the user to use the device even in systems with a grounded + pole.


Parameter	Value	Note
Input Voltage Range	10 to 60 VDC	
Surge Protection	600 W	10 / 1000 μs
Short Circuit Protection	Polyswitch	
Reverse Polarity Protection	Diode	

User Manual REV-202111

IO modules include one IF slot which can be used for IF modules. The main purposes of the IF modules are to provide:

- ❖ RS485 connectivity if the IO module board is used in the standalone addressable IO module communicating with PLC via the RS485 bus
- Provides serial interfaces for communication with other systems
- Additional inputs and outputs into system

- IF modules must be plugged into the IF slot when the power is turned off. After, the power is turned on the new IF module is automatically detected.
- When ordering, we recommend using the online configurator available at www.iplog.eu.

Overview Table of IF Modules

ORDERING		CONN	ECTOR D			
NAME	DESCRIPTION	1	2	3	4	5
IF-01	2x RS485	A1+	B1-	GND	B2-	A2+
IF-01G	2x RS485 ISO	A1+	B1-	GND-ISO	B2-	A2+
IF-02	2x RS232	Rx1	Tx1	GND	Rx2	Tx2
IF-02G	2x RS232 ISO	Rx1	Tx1	GND-ISO	Rx2	Tx2
IF-04G	RS485 ISO, DALI	A+	B-	GND-ISO	-D BUS	+D BUS
IF-05	RS485, 2x INPUTS ⁽¹⁾	A+	B-	GND	BI 2	BI 1
IF-06	AUDIO	OUT R	OUT L	GND	IN R	IN L
IF-07G	RS485 ISO, 1-Wire	A+	B-	GND-ISO	1-Wire	5V0-ISO
IF-09	RS485, M-Bus	A+	B-	GND	M-Bus+	M-Bus-
IF-10	KNX	BUS+	BUS+	NC	BUS-	BUS-
IF-11	Wiegand, 2x INPUTS ⁽¹⁾	Data 0	Data 1	GND	BI 2	BI 1
IF-12	4x INPUTS ⁽¹⁾	BI 4	BI 3	GND	BI 2	BI 1
IF-13	RS232 (CTS, RTS, Rx, Tx)	CTS	RTS	GND	Rx	Tx
IF-13G	RS232 (CTS, RTS, Rx, Tx) ISO	CTS	RTS	GND-ISO	Rx	Tx
IF-14G	4x DIGITAL INPUTS (24V)	ISO DI 4	ISO DI 3	GND-ISO	ISO DI 2	ISO DI 1
IF-15	4x OC (NPN) OUTPUTS	OC 4	OC 3	GND	OC 2	OC 1
IF-15G	4x OC (NPN) OUTPUTS ISO	ISO OC 4	ISO OC 3	GND-ISO	ISO OC 2	ISO OC 1
IF-17G	1x RS485, 1x RS232	A+	B-	GND-ISO	Rx	Tx
IF-18G	1x LORA-EP1, 1x RS485	A+	B-	GND-ISO	Tx/Rx	VCC
IF-21	2x INPUTS ⁽¹⁾ , 1x RELAY	СОМ	NO	GND	BI 2	BI 1
IF-22G	2x DI. INPUTS 24V, 1x RELAY	СОМ	NO	GND-ISO	ISO DI 2	ISO DI 1

⁽¹⁾ Alarm / 5V Digital Inputs. It does not apply to combination with the BI8.1 and BI8.4 module, where they only work as digital.

That way labeled IF modules are suitable for standalone IO modules. They are always connected to a PLC or LAN-RING switch via the RS485 bus.